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Measurements and simulations in experimental Nuclear Physics
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Role of simulations in experimental Nuclear Physics
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Design Experiments Design and develop detectors and large-scale detector systems based on key 
measurements / physics reach and background estimates. Optimize the design.  

Analysis Develop and verify analysis methods and tools: Does the analysis tool or method give the 
corrector result? Estimate systematic uncertainties.  

Verify Measurements Detailed simulations essential for commissioning experiments and verify analyses. 
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Analysis



Simulation Software for the EIC

Monte Carlo Event Generators

Fast simulations

Reconstruction

Simulation of physics processes

Full simulations

Analysis of simulated data

Simulation of detector responses
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EIC R&D For Software & Computing

EIC Software & Computing is in a very early life stage: 
• The current focus is supporting detector design. 
• Software Working Group (SWG) within the EIC User Group works with the community and proto-collaborations to 

address software needs and evolving R&D. 
• Legacy codes and frameworks are in use. 
• Distributed Computing approach to supply resources for physics detector studies. 
• At the pre-requirements stage for production computing and software activities. 
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https://eic.github.io/organization/swg.html


AI/ML for EIC

AI/ML already has an important presence in EIC, with one of the proto-collaborations (ECCE) applying it to 
detector design optimization, as well as applications such as streaming DAQ, and a new AI Working Group as part 
of SWG to explore and develop AI/ML’s potential. 
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The Software Working Group collected information on the community's 
specific software tools and practices during the Yellow Report Initiative.

Q7. Do you have any comments on your current experience with EIC 
Software?

Common message:
Priorities for consolidating around 

common software are in MC 
generators and detector simulation

Driven by community need, ‘bottom up’
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EIC Common Software: The Software EOI (and ‘living’ planning document)

• Software Tools for Simulations and Reconstruction
• Monte Carlo Event Generators 
• Detector Simulations 
• Reconstruction 
• Validation

• Middleware and Preservation
• Workflows
• Data and Analysis Preservation

• Interaction with the Software Tools
• Explore User-Centered Design
• Discoverable Software cvmfs/spack
• Data Model

• Future Technologies
• Heterogeneous computing
• New languages and tools
• Collaborative software

29 
institutions

https://eic.github.io/activities/eoi.ht
ml

https://indico.bnl.gov/event/8552/contributions/43221/
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MCEG Distribution for the EIC

EIC community has been organized around its MCEGs needs 
already for several years: 

• PYTHIA6 (modified)
• BeAGLE
• DJANGOH
• elSpectro
• eSTARlight
• MILOU
• PEPSI
• RAPGAP
• Sartre
• TOPEG (Orsay Perugia)

Maintained on CVMFS and used for a plethora of EIC studies.
Established HepMC2/3 as standard in the wider EIC 
community (thanks to Andrii Verbytskyi (MPP) for support).
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Kolja Kauder (BNL)



Discussion of Event Generation and Simulation Needs
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Monte Carlo Event Generator
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MCEG
• faithful representation of QCD dynamics
• based on QCD factorization and evolution equations

MCEG algorithm
1. Generate kinematics according to fixed-order matrix elements 

and a PDF. Session on ”The Role of PDFs” 

2. QCD Evolution via parton shower model (resummation of soft 
gluons and parton-parton scatterings). Session on ”The Role 
of Parton Showers” 

3. Hadronize all outgoing partons including the remnants 
according to a model. Session on ”The Role of 
Hadronization” 

4. Decay unstable hadrons. 



Event Generators for the EIC
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Monte Carlo Simulation of 
• electron-proton (ep) collisions,  
• electron-ion (eA) collisions, both light and heavy ions, 
• including higher order QED and QCD effects, 
• including a plethora of spin-dependent effects.  

Common challenges, e.g. with HL-LHC: High-precision QCD 
measurements require high-precision simulations. 

Unique challenges MCEGs for electron-ion collisions and 
spin-dependent measurements, including novel QCD 
phenomena (e.g., GPDs or TMDs). 



Start building a MCEG community for the EIC 
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Satellite workshop during POETIC 8 

Organized by Elke-Caroline Aschenauer (BNL), Andrea Bressan (Trieste), Markus Diefenthaler (JLab), 
Hannes Jung (DESY), Simon Plätzer (Vienna), Stefan Prestel (LUND)



Summary from MCEG workshop series 

• General-purpose MCEGs, HERWIG, PYTHIA, and SHERPA, will be significantly  improved w.r.t. MCEGs at HERA time: 

• Comparisons with HERA data and QCD predictions critical: 

• To learn where physics models need to be improved, 
• To complement MC standard tunes with first DIS/HERA tune. 

• The existing general-purpose MCEG should be able to simulate NC and CC unpolarized observables also for eA. A 
precise treatment of the nucleus and, e.g., its breakup is needed. 

• First parton showers and hadronization models for ep with spin effects, but far more work needed for polarized ep / 
eA simulations.

• Need to clarify the details about merging higher QED+QCD effects (in particular for eA).
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MCEG for eA Less clear situation about theory and MCEG. 

MCEG for ep On a good path, but still a lot of work ahead. 

• Pioneering projects, e.g., BeAGLE, spectator tagging in ed, Sartre. 

• Active development, e.g., eA adaptation of JETSCAPE, Mueller dipole formalism in Pythia8 (ala DIPSY). 



Introducing modern general-purpose MCEGs and Rivet 
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Excellent feedback on online tutorials and their recordings. 



Other (N = 9): personal computer codes (N = 2), ACT, CLASDIS, ComptonRad, GRAPE-
DILEPTON, MADX, MILOU, OPERA, RAYTRACE, Sartre, Topeg, ZGOUBI

MCEGs used for Yellow Report report

Source State of Software Survey
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https://eic.github.io/activities/ucd.html
https://github.com/eic/documents/blob/master/reports/general/SWG-Survey-202102.pdf


Starting with MCEG validation using Rivet

MCEG R&D requires easy access to data:
• data := analysis description + data points

HEP existing workflow using Rivet. 

Ongoing activity with EIC-India and MCnet: 

• Comparison to published results using RIVET and understand differences. 

• Provide initial findings and results in publication (work in progress):: 
• Overview of where we stand in understanding HERA data with current physics and models implement in MCEGs.
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Transverse Energy Flow (x > 10
�3 region)

(31) Pythia8 (32) Herwig7 (33) Sherpa2

• The MCs better explains the data in x > 10�3 comapred to

x < 10�3

17

Pythia8 Herwig7 Sherpa2

→ Detailed presentation by Vaibhavi Gawas

→ Rivet talk by Andy Buckley



Machine-Detector interface (MDI)
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The aim is to get ~100% acceptance
for all final state particles, and measure
them with good resolution.

Experimental challenges: 
• beam elements limit forward 

acceptance
• central Solenoid not effective for 

forward

Central
Detector

Beam Elements

Beam Elements

Possible to get ~100% acceptance for the whole event.

Integrated interaction region and detector design to optimize physics reach



MDI in Simulations 
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CAD Interface 
(accelerator 

elements and 
service 

structures)

EIC Project Simulation based (in part) on CAD files provided by EIC project engineering teams, rather 
than a bottoms-up reliance on constructive solid geometry (Screenshots from eAST) 

IR Layout
Unprecedented integration of IR 
and detector (shown here for IP6).



Accelerator and Beam Conditions Critical for EIC Simulations

• Accelerator and beam effects that influence EIC measurements 

• Beam crossing angle, 
• Crabbing rotation, 
• Beam energy spread, 
• Angular beam divergence, 
• Beam vertex spread.

• Note for EIC Community https://eic.github.io/resources/simulations.html

• Profound consequences on measurement capabilities of the EIC and 
layout of the detectors, 

• How to integrate these effects in EIC simulations. 
• Authors J. Adam, E.-C.Aschenauer, M. Diefenthaler, Y. Furletova, J. Huang, 

A. Jentsch, B. Page. 
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Figure 9: Final state particle azimuth vs pseudorapidity for the 18x275 GeV 25 mRad (upper left),
18x275 GeV 35 mRad (upper right), 5x41 GeV 25 mRad (lower left), and 5x41 35 mRad (lower
right) configurations.

(a) Azimuth Projection (b) Pseudorapidity Projection

Figure 10: Final state particle azimuth (a) and pseudorapidity (b) distributions for the four beam
energy and crossing angle combinations. Colored lines show the distributions with all beam effects
included , while the grayscale lines show the distributions obtained from the head-on collisions with
no other beam effects included.

In addition to changes in the ⌘ � � positions of particles, the changes in beam momentum will
also affect the final state particles’ momentum. Figure 11 shows particle transverse momentum as
a function of pseudorapidity for the four beam energy and crossing angle combinations as well as
the distributions as they are when no beam effects are included. It is seen (especially for the higher
hadron beam energy) that the particles at large pseudorapidity which are shifted into peaks at lower
pseudorapidities are also pushed to higher transverse momentum. As with the pseudorapidity and
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Beyond that Include beam background estimates in simulations. 

https://eic.github.io/resources/simulations.html
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Detector simulations and Geant4
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EIC
• Detector (and physics) simulations rely on Geant4, 

the (!) detector simulation toolkit for HEP and NP: 

• Detector full simulations for ATHENA and ECCE 

detector concepts based on Geant4. 

• As GeantV comes up at times: 

• Project concluded: no performance gain from the 

vectorization of the individual software components, 

• Modular software packages such as VecGeom

integrated into Geant4.

• Energy range is different from LHC, 

• validation, tuning and extension including test 

beam studies required. 

• Ongoing collaboration with international Geant4 

collaboration, including Technical Forum on NP/EIC.

22

(Screenshots from eAST) 

https://inspirehep.net/literature/1794170


Towards a Next-Generation Simulations
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Survey from February 16 – 23, 2021. 

There are too many generators 
and simulation tools used at the 

moment.

5 x

report

Unify the Simulation Effort 
• The SWG is preparing to launch a common effort on next-generation simulations: 

• building on the work done in the existing simulations, 
• unify the software community behind one common effort, 
• a requirement for the common framework is that it integrate the existing 

detector simulations in a modular way.

https://eic.github.io/activities/ucd.html


Detector 
Simulation

Project eAST in a nutshell
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• comprehensive, centrally maintained application
• based on Geant4 for fast and full simulations 
• with library of potential detector options 

Requirements
• ability to reuse existing simulation work
• ease of switching detector options
• ease of switching between detailed and coarse detector 

descriptions
• ease of leveraging new and rapidly evolving technologies,

• AI/ML to accelerate simulations 
• computing hardware, e.g., heterogeneous architectures

• AI/ML is the best near term prospect for using 
LCF/Exascale effectively

Project Leader • Makoto Asai, Geant4 project leader and deep technical expert 
for >20yrs. 

20 developers and growing



The role of AI/ML in simulations
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Lesson learned High-precision QCD measurements require 
high-precision simulations 

Statistical accuracy for precise hypothesis testing
• up to trillion of simulated events required (HL-LHC )
• often computationally intensive, in particular calorimeter 

simulations 

Common alternatives
• fast simulations with computationally efficient 

approximations, e.g., parameterizations or look-up tables
• still insufficient accuracy for high-precision measurements

Promising alternatives 
• fast generative models, e.g., GANs or VAEs
• AI driven design, e.g., Bayesian optimization 

Eur. Phys. J. A (2021) 57:100
https://doi.org/10.1140/epja/s10050-020-00290-x
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Bringing experts in various domains of QCD theory and experiment together
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“It will be joint progress of theory and experiment that moves us forward, not in one side alone”
Donald Geesaman (ANL, former NSAC Chair) on “Nuclear Physics in a Decade”  

Open Questions
• How will we compare theory and experiment at the EIC? 

• Will we unfold our experimental measurements to Born level and compare them to theoretical 
calculations at Born level? This has been done at HERA. 

• Will we fold the theoretical calculations with radiative and detector effects and compare them at 
detector level? This has been done for NP and being developed further, e.g., [arXiv:2108.13371]. This is 
also being discussed for LHC.

• This has profound consequences on the reproducibility and reinterpretability of our measurements and 
the requirements on our analysis software and workflows.

• How will we evaluate PDFs and FFs at the EIC? 
• Can we have a “LHAPDF” type of interface for PDF and FFs, including nuclear, spin-dependent, transverse-

momentum dependent effects? We need this for LO, NLO, and beyond. 
• Can we use ML to parametrize all of this information, including uncertainties, in a computationally 

efficient way? 
• Do we understand the limitations of measurements at the EIC? 

• We are better and better understanding the measurement capabilities of the EIC detectors. 
• What about the theoretical limitations of the measurements? How can we address them?  

https://indico.jlab.org/event/213/
https://arxiv.org/abs/2108.13371
https://indico.jlab.org/event/420/


Towards high-precision simulations for the EIC
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Next steps for MC4EIC

• Discuss requirements for MCEGs and related computations tools to simulate the collision of highly-polarized 
electrons and highly-polarized light ions and unpolarized heavy ions.

• Develop a roadmap for MCEG developments for the EIC, including HEP-NP funding. 

• Priorities for the next years could be:
• Training of the EIC community, e.g., via online tutorials.
• Validation of existing MCEGs using Rivet. Build automated workflows (CI/CD). 
• Development of a DIS tune.
• Merging of higher order QED and QCD effects.
• Interface between MCEGs and Geant4 based on HepMC3.
• Roadmap for spin-dependent parton showers.
• Roadmap for spin-dependent hadronization models.
• Guidance on how to compare measurements at the EIC with theory. 
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Summary
Markus Diefenthaler

mdiefent@jlab.org

• Simulations essential for design of experiments, data analysis, and verification of measurements. 

• Simulations for the EIC, i.e. MCEGs and fast and full detector simulations for the EIC, require R&D. We miss core 
capabilities and we need to work towards accuracy and precision. 

• Simulation R&D is most efficiently done in common projects and in collaboration with other fields, in particular HEP.  

• Many opportunities for AI/ML to complement and improve simulations. While AI/ML approaches will substitute parts 
of our simulation workflows, they will not replace core tools, e.g., general-purpose MCEGs or Geant4. 


